DreamFect™ Gold / PetakaG3™ INSTRUCTION MANUAL

DreamFect[™] Gold / PetakaG3[™]

DreamFect™ Gold / PetakaG3™

The powerful lipid-based transfection reagent, DreamFect[™] Gold, from OZ Biosciences is now associated with the most advanced cell culture device, PetakaG3[™], from Celartia to propose a unique transfection solution.

List of DreamFect™ Gold transfection reagents

Catalog Number	Description	Volume (μL)	Size (number of transfection / μg of DNA)
DG80500	DreamFect Gold ™	500	125 to 500
DG81000	DreamFect Gold ™	1000	250 to 1000
DG85000	DreamFect Gold ™	5 X 1000	1250 to 5000

List of PetakaG3™ cell culture device

Please refer to: www.petaka.com for the appropriate reference and catalog number

Use the content of the table above to determine the appropriate catalog number for your needs. You can order these products by contacting us (telephone, fax, mail, e-mail) or directly through our website. For all other supplementary information, do not hesitate to contact our dedicated technical support: tech@ozbiosciences.com.

OZ Biosciences

Parc Scientifique de Luminy Zone Luminy Entreprise Case 922 13288 Marseille Cedex 9 - FRANCE. Tel: +33 (0)4.86.94.85.16

Fax: +33 (0)4.86.94.85.15 E-mail: contact@ozbiosciences.com Web Site: www.ozbiosciences.com

Celartia

Calle San Juan de la Cruz 29 Valencia 46009 Spain Tel +34 963 941 909 Fax +34 963 370 359

E-mail: <u>infoeurope@celartia.com</u> Web Site: <u>www.celartia.com</u>

			Table of Contents 6	
1.	Techno	ology		2
	1.1.	Description		2
	1.2.	Products Specifications		2
2.	Applica	itions		3
	2.1.	Application Areas		3
	2.2.	Cell Types		3
3.	Protoc	ols		3-6
	3.1.	General Considerations		3
	3.2.	Cell Preparation		3-4
	3.3.	Transfection protocol		4-5
	3.4.	Optimization protocol		6
4.	Append	dix		6-7
	4 1	Troubleshooting		6-7

1. Technology

1.1. Description

OZ Biosciences SAS and Celartia Ltd. are delighted to announce the association of their most powerful reagents for transfection with the most convenient cell culture device.

OZ Biosciences has developed specifically for Petaka $G3^{TM}$ cell culture device, an optimized procedure for transfecting cells. Two methods were developed: 1) Magnetofection: magnetic assisted transfection of cultured cells and 2) Lipofection: lipid-based transfection. These processed enables powerful transfection of cells in a more economically and efficiently manner. Transfection can be achieved on one or both sides of Petaka $G3^{TM}$ cell culture device, with the same or different plasmids allowing very sophisticated experiments on cell interactions through soluble factors and contact factors.

Two transfection technologies are available combining either PolyMag Neo to experience the powerful Magnetofection-based transfection reagent or DreamFect $Gold^{TM}$, the effective lipid-based reagent. Each of those is suitable for very high transfection efficiency.

Main **DreamFect**TM **Gold** features are:

- 1. Highly efficient & Biodegradable
- **2.** Achieve superior transgene expression level than any other reagents
- **3.** Multipurpose (various types of nucleic acids)
- 4. Universal (cell lines and primary cells)
- **5.** Simple, Ready-to-use and Rapid
- **6.** Serum compatible

Main *PetakaG3*™ features are:

- **1.** Easiness of cell culture conditions
- **2.** Protection against contamination perfect for establishing stable transfection
- **3.** Robust structure / optimized cell transport
- **4.** 8 times more media volume per incubator
- **5.** 15 times more cell culture surface area per incubator
- **6.** Optimized media and growth factors supplies
- **7.** completely safe and versatile
- **3.** Easy storage and tracking

1.2. Products Specifications

For DreamFect Gold transfection reagent, please refer to its instruction manual for the specifications (handling, shipping, storage, stability). http://www.ozbiosciences.com/dreamfect-gold.html

For PetakaG3 cell culture device, please refer to its instruction manual for the specifications (shipping, storage, stability). http://www.celartia.com/

2. Applications

2.1. Application Areas

Please refer to OZ Biosciences and Celartia to get full access to the range of applications for each product. The association of DreamFectTM Gold and Petaka $G3^{TM}$ cell culture device offer the unique opportunity to transport nucleic acids into cells seeded either on one or the two sides of the device with very high efficiency.

2.2. Cell Types

DreamFectTM Gold reagent is applicable with numerous cell types and has been successfully tested on a variety of immortalized cell lines as well as primary cells. All cells successfully transfected with DreamFect Gold reagent in classic cell culture devices can be transfected on PetakaG3TM cell culture device. An updated list of transfected cells is available on OZ Biosciences website: $\underline{www.ozbiosciences.com}$. You can also submit your data to $\underline{tech@ozbiosciences.com}$ so we can update this list and give you all the support you need.

3. Protocols

3.1. General Considerations

The instructions given below represent sample protocols that were applied successfully. Optimal conditions may vary depending on the nucleic acid, cell types, and cell culture conditions. Therefore, the amounts and ratio of the individual components (DNA and DreamFect Gold) may have to be adjusted to achieve best results since each cell line has a particular optimal transfection reagent / nucleic acids ratio. Thus, we suggest optimizing the various transfection parameters as described in section **3.4**). The following recommendations can be used as guidelines to quickly achieve very good transfection and high transgene expression level. As a starting point, we recommend to use **3 µL of DreamFect Gold / 1 µg of DNA**.

- **Cells** should be healthy and assay during their exponential growing phase. The presence of contaminants (mycoplasma, fungi) will considerably affect the transfection efficiency. The cell proliferating rate is a critical parameter and the optimal confluency has to be adjusted according to the cells. We recommend using regularly passaged cells for transfection and avoid cells that have been cultured for too long (> 2 months).
- **Nucleic acids** should be as pure as possible (endotoxin-free). Moreover, we suggest avoiding long incubation time of the DNA/RNA solution in buffers or serum free medium before the addition of DreamFect Gold reagent to circumvent any degradation or surface adsorption.
- **Antibiotics**. The exclusion of antibiotics from the media during transfection has been reported to enhance gene expression levels. This was not observed with the DreamFect Gold and this effect is cell type dependent and usually small.
- **Materials**. We recommend using polypropylene tubes to prepare the DNA and transfection reagent solutions but glass or polystyrene tubes can also be used.

3.2. Cells Preparation

It is recommended to seed or plate the cells the day prior transfection. The suitable cell density will depend on the growth rate and the conditions of the cells. Cells should not be less than 60 % confluent (percentage of growth surface covered with cells) at the time of transfection (see the suggested cell number in the Table 1). The correct choice of optimal plating density also depends on the planned time between transfection and transgene analysis: for a large interval, we recommend a lower density and for a short interval a higher density may be advantageous. (See section 3.3 for procedure)

Please refer to Celartia website for more information on the cell preparation in PetakaG3[™] cell culture device www.celartia.com

Table 1: Cell number, DNA amount, DreamFect Gold volume and transfection conditions suggested.

Number of PetakaG3 sides	Adherent Cell Number	DNA Quantity (μg)	DreamFect Gold Volume (μL)	Dilution Volume (µL)	Transfection Volume
One Side	20 – 50 x 10 ⁵	10-20	30-60	250	20 mL
Two Sides	40 – 50 x 10 ⁵	20-40	60-120	500	20 mL

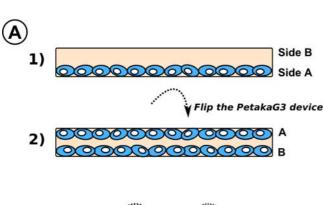
3.3. Transfection protocol

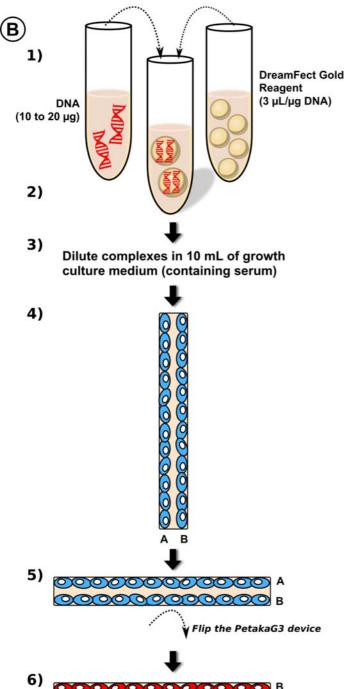
This protocol has been optimized to transfect with high efficiency one side or the two sides of the PetakaG3TM cell culture device. The association of PetakaG3 cell culture device with DreamFect Gold transfection reagent allows to transfect cells seeded on one or two faces of a cell culture device in one shot with very high efficiency. The instructions provided here are guidelines to rapidly reach high transfection efficiency.

The DNA and DreamFect Gold solutions should have an ambient temperature and be gently vortexed prior to use. The rapid protocol is as simple as follows: Use 3 μ L of DreamFect Gold per μ g of DNA. We suggest beginning with this ratio and optimize it, if required, by following section 3.4.

For transfecting one side only, simply use the DNA quantity and DreamFect Gold reagent volume recommended in Table 1 and follow the protocol below.

A) Preparation of cells in PetakaG3 cell culture device


- 1) One side: seed the cells on one side according to Celartia protocol and incubate 6 hours in horizontal position.
- 2) Two sides: flip the PetakaG3 device and seed the cells on the other side as recommended by Celartia.


B) Transfection Procedure

- 1) DNA solution. Dilute 20 to 40 μg of DNA in 250 μL of culture medium without serum and antibiotics (PBS* can also be used to dilute the DNA, see 3.4.3).
- 2) <u>DreamFect™ Gold solution</u>. Dilute 60 to 120 µL of DreamFect Gold in 250 µL culture medium <u>without</u> serum and antibiotics (PBS* can also be used to dilute the DNA, see 3.4.3).

• Do not use serum-containing media for this step!

- 3) Add the DNA solution into the DreamFect[™] Gold solution, mix gently by carefully pipetting up and down 2-3 times and incubate the mixture for 15-20 minutes at room temperature. Do not vortex or centrifuge!
 - The diluted solutions should be combined within 5 minutes.
- 4) Add the DNA complexes to at least 10 mL of complete growth culture medium (containing serum). Withdraw 11 mL culture medium from PetakaG3 device and inject the 10 mL containing complexes. Finally add 1 more mL to push complexes from the device circulation circuit. Gently rock the plate to disperse complexes.
- 5) Place PetakaG3 in horizontal position and incubate the cells at 37°C in a CO₂ incubator. Flip the device every 30 minutes during 2 to 3 hours to ensure an optimal cells-complexes contact on the two sides. If transfection is performed on only one side, then no flipping of the PetakaG3 is required.
- 6) Thereafter, incubate the cells at 37°C in a CO₂ incubator under standard conditions until evaluation of the transgène expression. Depending on the cell type and promoter activity, the assay for the reporter gene can be performed 24 to 72 hours following transfection.
 - For some cells, 24 hours post-transfection replace old media with fresh media.
 - In case of very sensitive cells, the medium can be change 6 hours after transfection.

A Preparation of cells in PetakaG3 cell cultre device

 Seed the cells on one side of the PetakaG3 cell culture device according to Celartia protocol.

6 hours incubation

2) Seed the cells on the other side of the PetakaG3 cell culture device according to Celartia protocol.

(B) Transfection Procedure

Allow Reagents to reach Room Temperature (R.T.)

- 1) Add diluted nucleic acids to diluted DreamFect Gold transfection Reagent
- 2) Incubate nucleic acids + DreamFect Gold complexes 15 to 20 min at R.T.
- 3) Dilute complexes in 10 mL of growth culture medium (containing serum)
- **4)** Replace culture medium in Petaka Device with medium containing complexes
- 5) Incubate the cells at 37°C in a CO2 incubator and flip the Petaka device every 30 minutes during 2 to 3 hours to ensure an optimal cells-complexes contact
- **6)** Incubate the cells at 37°C in CO2 incubator under standard conditions until evaluation of the transgene expression.

Assay 24-72 H

3.4. Optimization Protocol

Although high transfection efficiencies can be achieved in a broad range of cell types with the rapid protocol, some optimization may be needed in order to obtain the maximum efficiency in particular cells. For best results, we recommend optimization of the transfection protocol for each combination of plasmid and cell line used in order to get the best out of DreamFect Gold / PetakaG3. Several parameters can be optimized:

- Ratio of DreamFect Gold to nucleic acid (DNA/siRNA/RNA)
- Dose of nucleic acid used
- · Cell type and cell density
- Culture medium composition (+/- serum) and reagent / nucleic acid complex medium
- Incubation time

We recommend optimizing one parameter at a time while keeping the other parameters (cell number, incubation time etc.) constant. The two most critical variables are the ratio of DreamFect Gold reagent to DNA and the quantity of DNA.

1) DreamFect[™] Gold / DNA ratio:

This is an important optimization parameter. DreamFect Gold has to be used in slight excess compare to DNA but the optimal ratio will depend on the cell line. For optimization, first maintain a fixed quantity of DNA and then vary the amount of DreamFect Gold reagent. You can test 1; 2; 3; 4 and 5μ L per μ g DNA. Attention: Diluted DreamFect Gold solution must be freshly prepared.

2) Quantity of DNA:

Thus, after optimization of the DreamFect Gold / DNA ratio, proceed to adjust the best amount of DNA required by maintaining a fixed ratio of DreamFect Gold reagent to DNA, and vary the DNA quantity. You can test for one side transfection 5; 10; 20 and 30 µg DNA.

3) DreamFect Gold / DNA complex medium:

PBS or serum- and antibiotic-free medium can be used to prepare the complexes. We recommend DMEM serum free medium or PBS composition: 137mM NaCl, 2.7mM KCl, 1.5mM KH_2PO_4 and 6.5mM Na_2HPO_4 x 2 H_2O ; pH7.4.

4) Cell culture conditions:

Thereafter, culture medium compositions, cell number, incubation times can also be optimized.

Do not hesitate to contact our technical service at <u>tech@ozbiosciences.com</u> to request any information or specific protocols.

Problems	Comments and Suggestions		
Low transfection	1- DreamFect / DNA ratio. Optimize the reagent / DNA ratio, please refer to optimization paragraph.		
efficiency	2- DNA amount. Use different quantity of DNA with the recommended or optimized (above) transfection reagent / DNA ratio.		
	3- Cell density. A non-optimal cell density at the time of transfection can lead to insufficient uptake. The optimal confluency should range from 50 to 70% (true confluency, corresponding to 90% visual confluency) but most favourable cell density may vary according to the cell type; preferably mid-log growth phase.		
	4- DNA quality. DNA should be as pure as possible. Free of contaminants (proteins, phenol, ethanol etc.) and endotoxins levels must be very low since they interfere with transfection efficiencies. Employ nuclease-free materials.		

Low transfection efficiency

- 5- **Type of promoter**. Ensure that DNA promoter can be recognized by the cells to be transfected. Another cells or viral-driven reporter gene expression can be used as a control.
- 6- **Cell condition.** 1) Cells that have been in culture for a long time (> 8 weeks) may become resistant to transfection. Use freshly thawed cells that have been passaged at least once. 2) Cells should be healthy and assay during their exponential growing phase. The presence of contaminants (mycoplasma, fungi) alters considerably the transfection efficiency.
- 7- **Medium used for preparing DNA / transfection reagent complexes**. It is critical that serum-free medium or buffer (HBS, PBS) are used during the preparation of the complexes. Avoid any direct contact of pure DreamFect Gold and pure nucleic acid solution with the plastic surface.
- 8- **Cell culture medium composition.** 1) For some cells, transfection efficiency can be increased without serum or under reduced serum condition. Thus, transfect these cells in serum-free medium during the first 4h of incubation. 2) The presence of antibiotics might affect cell health and transfection efficiency.
- 9- **Incubation time and transfection volume.** The optimal time range between transfection and assay varies with cells, promoter, expression product, etc. The transfection efficiency can be monitored after 24 96h by analyzing the gene product. Several reporter genes can be used to quantitatively monitored gene expression kinetics.
- 10- **Old transfection reagent / DNA complexes.** The transfection reagent / DNA complexes must be freshly prepared every time. Complexes prepared and stored for longer than 1 hour can be aggregated.
- 11- **Transgene detection assay**. Ensure that your post-transfection assay is properly set up and includes a positive control.
- 12- **Transfection reagent temperature.** Reagents should have an ambient temperature and be vortexed prior to use.
- 13- **Transfection reagent storage.** Transfection efficiency can slowly decrease if DreamFect Gold is kept more than one week at +4°C. Store at -20°C to recover initial efficiency.

Cellular toxicity

- 1- **Unhealthy cells.** 1) Check cells for contamination, 2) Use new batch of cells, 3) Ensure culture medium condition (pH, type of medium used, contamination etc), 4) Cells are too confluent or cell density is too low, 5) Verify equipments and materials
- 2- **Transgene product is toxic.** Use suitable controls such as cells alone, transfection reagent alone or mock transfection with a nucleic acid control.
- 3- **DNA quality Presence of contaminants.** Ensure that nucleic acid is pure, contaminant-free and endotoxin-free. Use high quality nucleic acids as impurities can lead to cell death.
- 4- **Concentration of transfection reagent / nucleic acid too high.** Decrease the amount of nucleic acid / reagent complexes added to the cells by lowering the nucleic acid amount or the transfection reagent concentration. Complexes aggregation can cause some toxicity; prepare them freshly and adjust the ratio as outlined previously.
- 5- **Incubation time.** Reduce the incubation time of complexes with the cells by replacing the transfection medium by fresh medium after 4h to 24h.

Our dedicated and specialized technical support group will be pleased to answer any of your requests and to help you with your transfection experiments. tech@ozbiosciences.com. In addition, do not hesitate to visit our website www.ozbiosciences.com and the FAQ section.