1. Herrera et al. (2010). Novel hermetic cell culture containers (Petaka™) and cytomic assays for testing sustained in vitro toxicity and general cell biological research. Toxicology Letters, 196. doi:10.1016/j.toxlet.2010.03.509
2. Kaneto et al. (2010). New technology for tissue culture: Petaka (Celartia) without the need of CO2 incubator. In: V Congresso Brasileiro de Células-tronco e Terapia Celular. http://tinyurl.com/zal7m58
3. Herrera G, O’Connor JE (2011). Method and test kit for in vitro study of the effects of chronic treatment with substances on cell cultures. Univ. of Valencia. Patent: ES 2350072 B1
4. Barbera & Gallagher (2012). Ducted Respiratory Chamber Bioreactors. GEN Vol. 32 no. 19. doi:10.1089/gen.32.19.18
5. Paraguassú-Braga, Bouzas (2012). Isolamento e expansão de células multipotentes mesenquimais para fins clínicos: associação do sistema de processamento Sepax com sistema de cultivo Petaka.Rev Bras Hematol Hemoter Vol. 34 Supl. 2. http://tinyurl.com/gpm5bw8
6. Scarlet et al. (2012). Applicability of a New Cell Culture Device for Cooled-Storage of Stallion Semen. Reproduction in Domestic Animals, 48: e20–e22. doi:10.1111/j.1439-0531.2012.02115.x 2013
8. Zotarelli Filho et al. (2013). Chitosan-collagen scaffolds can regulate the biological activities of adipose mesenchymal stem cells for tissue engineering. Journal of Regenerative Medicine & Tissue Engineering. doi:10.7243/2050-1218-2-12
10. Muniesa Lajara C (2013). Materiales nanoestructurados biocompatibles basados en sílice. Preparación y aplicaciones en terapia anticancerígena. PhD dissertation, Univ. Politécnica de Valencia. https://riunet.upv.es/handle/10251/29691
12. Robinson et al. (2014). Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnol Lett 36: 201. doi:10.1007/s10529-013-1349-5
13. Zotarelli Filho IJ (2014). Matrizes de quitosina-colágeno podem regular as atividades biológicas de células tronco mensenquimais adiposas para a engenharia de tecidos. MSc dissertation. Univ. Universidade Estadual Paulista “Júlio de Mesquita Filho”. https://tinyurl.com/ybroltuj
14. Wang et al. (2014). Molecular Determinants and Clinical Implications of Breast Cancer Dormancy. Texas M. D. Anderson Cancer Center research report for the U.S. Army Medical Research and Materiel Command. https://tinyurl.com/y9mxbwsr
15. Abeille F (2014). Automation and integration of a bioreactor for continuous cell culture. PhD dissertation, Université de Grenoble. ps://tel.archives-ouvertes.fr/tel-01556082
16. Zotarelli Filho et al. (2015). Chronic Obstructive Lung Disease, Stem Cells and Telocytes: Review of Therapeutic. Cell Biol: Res Ther 4:1. doi:10.4172/2324-9293.1000113
17. Jacob et al. (2015). Significant Improvement in Ejection Fraction and Functional Class after Two Years of Cells Transplantation. Cell Biol: Res Ther 4:2. doi:10.4172/2324-9293.1000120
19. Maus et al. (2015). Melanoma-derived extracellular vesicles (EVs) as drivers of immunosuppression. Mayo Clinic. http://tinyurl.com/hogmrhx
20. Franses et al. (2015). Compositions and Uses to Govern Cancer Cell Growth. Massachusetts Institute Of Technology. Patent: US 20150196687 A1
21. Jesson et al. (2016). Storage and Delivery of Stem Cells for Cellular Therapies. In Stem Cell Manufacturing, Elsevier. https://tinyurl.com/y8en52tg
22. Robinson NJ (2016). Low Temperature Pausing: An Alternative Short-Term Preservation Method for Use in Cell Therapies. PhD dissertation, Loughborough University. https://tinyurl.com/y2ka5boy
23. Gaudioso G (2017). Destabilize the Glioma Cell Niche Through HSP90-GRP78 Network Targeting. PhD dissertation. Univ. of Milano. doi:10.13130/g-gaudioso_phd2017-02-16
24. Maus et al. (2017). Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation. Front. Immunol. doi:10.3389/fimmu.2017.00358
25. Maus RLG (2017). Immunology of Nodal Metastases: The Role of Extracellular Vesicles. PhD dissertation, Mayo Clinic. https://goo.gl/RFD3GT
26. SonoCure (2017). High-Throughput Screening of Sonoporation-Enhanced Therapy. http://sonocure.b.uib.no/in-vitro/
27. Daniszewski et al. (2017). Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technology. doi:10.1177/2472630317712220
28. Huttelmaier et al. (2018). Investigation of Cell surface Markers on Cancer Cells Cultured under Hypoxic Conditions. Dep. Biology, Carthage College. https://goo.gl/9EGZPU
29. Aijaz et al. (2018). Biomanufacturing for clinically advanced cell therapies. Nature Biomedical. doi:10.1038/s41551-018-0246-6
30. Sundøy SM (2018). Investigation of protein signalling pathways activated by sonoporation in cancer. MSc dissertation, Univ. of Bergen. http://bora.uib.no/handle/1956/17971
31. Frascino LF, Zotarelli Filho IJ (2018). Quantitative and Qualitative Analysis of Human Stromal Vascular Fraction from Different Methods of Liposuction. Short Title: Stromal Fraction from Liposuction Types. Stem Cell Research & Therapy 8. doi:10.4172/2157-7633.1000439
32. Zotarelli Filho IJ (2018). Investigação do potencial de utilização em terapia celular de células tronco mesenquimais cultivadas em matrizes de quitosana-colágeno-genipina, em petakas e após criopreservação. PhD Dissertation. Univ. Estadual Paulista “Júlio de Mesquita Filho”. https://tinyurl.com/ybcve2qy
33. Postat et al. (2018). A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses. Immunity. doi:10.1016/j.immuni.2018.07.014
34. Géry et al. (2019). Long-Term in vitro Cultivation of Plasmodium falciparum in a Novel Cell Culture Device. Am. J. of Tropical Medicine and Hygiene. doi:10.4269/ajtmh.18-0527
35. Bjånes et al. (2019). Sonoporation and gemcitabine delivery in pancreatic cancer cell lines. 18th Symposium on Purine and Pyrimidine Metabolism in Man. Lyon, France. https://tinyurl.com/y3jkwbnt
36. Castle et al. (2019). Sonoporation for Augmenting Chemotherapy of Pancreatic Ductal Adenocarcinoma. In: Jain K. (eds) Drug Delivery Systems. Methods in Molecular Biology, vol 2059. doi:10.1007/978-1-4939-9798-5_9
37. Maus et al. (2019). Identification of novel, immune-mediating extracellular vesicles in human lymphatic effluent draining primary cutaneous melanoma. OncoImmunology. doi:10.1080/2162402X.2019.1667742
38. Natasha Sheybani. 2018. FUS stimulation of glioma-derived extracellular vesicle release in vitro. 6th International Symposium on focused ultrasounds. Reston, Virginia, October 21-25, 2018. https://www.fusfoundation.org/images/pdf/Symposium_Summary_2018.pdf
39. Haugse R, Langer A, Murvold ET, Costea DE, Gjertsen BT, Gilja OH, Kotopoulis S, Ruiz de Garibay G, McCormack E. Low-Intensity Sonoporation-Induced Intracellular Signalling of Pancreatic Cancer Cells, Fibroblasts and Endothelial Cells. Pharmaceutics. 2020 Nov 6;12(11):1058. doi: 10.3390/pharmaceutics12111058. PMID: 33171947; PMCID: PMC7694645.
40. Haubner, A. (2020). Thin-film cryopreservation and recovery of attached cells in culture using the Petaka G3™. Cryobiology, 97, 266-267.
41. Kotopoulis S, Popa M, Mayoral Safont M, Murvold E, Haugse R, Langer A, Dimcevski G, Lam C, Bjånes T, Gilja OH, Cormack EM. SonoVue® vs. Sonazoid™ vs. Optison™: Which Bubble Is Best for Low-Intensity Sonoporation of Pancreatic Ductal Adenocarcinoma? Pharmaceutics. 2022 Jan 1;14(1):98. doi: 10.3390/pharmaceutics14010098. PMID: 35056994; PMCID: PMC8777813.
42. Calcagno G, Ouzren N, Kaminski S, Ghislin S, Frippiat JP. Chronic Hypergravity Induces a Modification of Histone H3 Lysine 27 Trimethylation at TCRβ Locus in Murine Thymocytes. Int J Mol Sci. 2022 Jun 27;23(13):7133. doi: 10.3390/ijms23137133. PMID: 35806138; PMCID: PMC9267123.
43. Radnaa E, Urrabaz-Garza R, Elrod ND, de Castro Silva M, Pyles R, Han A, Menon R. Generation and characterization of human Fetal membrane and Decidual cell lines for reproductive biology experiments†. Biol Reprod. 2022 Mar 19;106(3):568-582. doi: 10.1093/biolre/ioab231. PMID: 34935931; PMCID: PMC8934701.
44. Zeng Y, Su X, Takezawa MG, Fichtinger PS, Lee UN, Pippin JW, Shankland SJ, Lim FY, Denlinger LC, Jarjour NN, Mathur SK, Sandbo N, Berthier E, Esnault S, Bernau K, Theberge AB. An open microfluidic coculture model of fibroblasts and eosinophils to investigate mechanisms of airway inflammation. Front Bioeng Biotechnol. 2022 Sep 29;10:993872. doi: 10.3389/fbioe.2022.993872. PMID: 36246374; PMCID: PMC9558094.
Videos
Cryopreservation in the Petaka